
-5 --5-5-5~ --5 ‘~~~ —

60

- I generate plans automatically. For example, the use of certain qsantIfIers In specs strongly

- suggests certain types of loop’ plans: existential quantification ~s often achiev ed by search

loops; universal quantification Is achieved by ‘visit-each’ loops. Hewitt c1975a> makes much

the same observation in his proposal of a ‘behavioral semantics for logic’. Further discussion

- of the apprentice’s stored knowledge of general plan types appears in Section 2.5

Deep Plans as Levels of Abstraction

- Deep plan struct ure is an important abstraction which allows a program to be

conceptualized independently of certain syntactic and implementation details. For example. the

data flow links of a deep plan only state which objects move from one segment to another, not

what programmi ng language construc ts are employed in realizing the data flow.

The use of specs to summarize the important behavior achieved- by a given plan is also a

kind of abstraction. When a segment Is used In a larger plan, only its specs are relevant; Its

internal plan can be ignored. Furthermore, when specs are written using very general relations

like membership, whose specific definition depends on implementation decisions, additional

abstraction Is obtained.

While omitting certain information about a program through abstraction, deep plans also

contain additional knowledge which is not explicitly present in the fully coded program. One

-1 example of such knowledge is the segmentation of the code into conceptual units. (This point

will be amplified in Section 2.4.) The teleological structure embodied In purpose links Is also

not always obvious from the program Implementation. Finally, as we have seen, purpose links

often refer to backpound knowledge of data structure, implementation choices, etc.

I Thus to summarize, it should be clear that deep plans are not just a different way of

:1 representing the information already contained in a program, but rather a slgnflcantly deeper

form of knowledge . We believe that plans capture a programmer’s underlying
-

-

conceptualization of program structure — the skeleton upon which code Is eventually hung . A

deep plan is i-ealized as a concrete program by choosing a total ordering which is consistent
-

-

with the constra ints of the data flow and purpose links , and by using the available

programming language primitives to Implement lowest level segments, along with the control

-

- 1

LL~ - -
~~~ 

-



_________________ — 
‘~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- -,.

~~~
, ~~~~~~~~~~~~~~~

-_
~~~~ ..- _, ,, - - - n——-- — _________________

64
- I

- .~ and data flow between them. To emphasize this distinction between the underlying conceptual
structure of a program and the more superficial structure influenced by the programming
language, we have called the plans of this section deep plans, In contrast with surface plans,

- which will be described In the following section.

~~~~ ~~~ - ~~~~~~~~~~~~~~~~~ 
- - _—--_--5-5_

- — —--~~~~——----.~~~~- -—--_- -.-_ -__-. — - - - —
~~~-- -_ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



—-5—..--— --5—.— —--5 

‘.‘
~“.“VW .,. ~ 

—
~~~

—.
~~~

——--“— — —~~~ -—--——-

62

2.4 Surface P1an~

In this section we show how the apprentice represents the relationship between the

underlying conceptual structure of a program. as expressed by the deep plan. and the structure

of actual LISP code that is the realization of the program.

Why Have Code?

Given deep plans, which describe the programmer’s intentions in a much more perspicuous

- - form than raw code, one might be tempted to banish traditional programming langua ges
- 

- 

- entirely in favor or programming solely In deep plans or something similar. However, this will

not be possible in the near future because of serious Inadequacies in the current state of the art

- 

- in specification languages (see Chapter Six). The search for specification techniques that

encompass all the important design criteria used by practicing programmers is still going on.

Furthermore, our deep ‘plan representation Is intended to be a level of abstraction which

ignores many Implementation efficiency issues. Until we have a theoretical basis for dealing

with time-space trade-of fs and such, we cannot give the programmer any better way of

expressing his efficIency-determined design choices than letting him actually write the detail of

the code in the manner he wishes, as long as it is compatible with the deep plan. We feel this

Is the only realistic approach to building a usable programmer’s apprentice system in the near

F ? future.

In order to be a useful !~!~~ 
programmer’s apprentice. our system must have significant

knowledge of how LISP programs in particular are crafted. Thus, whereas deep plans are

intended to be programming language Independent1 the surface plan representation in this

section is tailored for LISP code. However, the basic approach used here could equally well be

applied to constructing surface plan representations for programs written in other languages

(see for example Waters’ 4976> work on FORTRAN programs).

- 
-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



- 5 —  -5•~~~~~~~~~~~~~~~~~~~~~~~
-5 -5 -5 -5-5-••-5~~~~ ~~~~~~~~~ 

- -~ - —-- ----5——-- -5- --- - 
—

65

J I
Building a Surface Plan sad a CPD -

A surface plan is created by auxmentlng the deep plan of a program with information on
how parts of the deep plan are realized using features of the available programming language
(in this case LISP). In this section we are primarily concerned with defining the surface plan
representation. Chapter Four describes an algorithm for deriving surf ace plan information
from given LISP code.

In general the building of a surface plan can occur in two ways , depend ing on the
programmer’s mode of interaction with the apprentice. With the most primitive apprentice, a
programmer must provide both the deep plan and all the actual LISP code. In this mode, the
apprent ice first analyzes the LISP code bottom-up. as described in Chapter Four, and then
attempts to reccgnize the correspondence between the deep structure and the surface structure,
as described In Section 5.2. A more advanced apprentice, however, moves closer to automatic
programming wherein, for some parts of the program, the programmer supplies only the deep
plan and the apprentice generates the LISP code. In this mode, the surface plan is simply a
record of how the apprentice made use of the programming language constructs to realize the
control flow and data flow in the plan.

The net result of either of the above modes of Interaction with the apprentice is what we
call ch ’ complete program description (CPD). The CPD Includes everything the apprentice
knows about a program: the deep plan at all levels (which refers to data structure descriptions
and other background knowledge ), the surface plan, and the actual LISP code (including
comments).

Code Segments and Plan Segments

— 

The notion of a ~~~~~ Is as fundamental to the surface description of a LISP program as

it Is to the description of the underlying conceptual structure. Part of our Implicit model of a
programmer Is that he will write a code segment corresponding to each segment In his deep
plan. A code segment Is simp ly a meanlngfu l aggregation of program cod e, such as a

function definition, a function Invocation expression, or several lines of open code. A

particular aggregation of code Is ‘meanlngfu l in our system if It is considered by the
programmer as a unit of behavior, I.e. If ‘It corresponds to a segment at some level in the deep 

—-—-—~~~— —--5-— - .- —‘~~~~ —— ~~~~~~~~~~~ —~~~~~—~~~~~~~~~~ —— ——— —~~~~—~~ -——-5—s— - —



plan. Since each plan segment has a corresponding code segment which Is Its realization, we

will often use the unmodified term segment” when the ambiguity Is not confus ing.

Code segments must be hierarchical in the same way that plan segments are, i.e. there are
segments withIn segments, and sub-segments may be shared between larger segments. The
possible sharing of plan segments means that code segments may also overlap. A particular
code segment may be large or small, according to the level of detail required. For example it
may be appropriate for some purpose to consider the entire volume of code for a large system
to be a single code segment. A more refined description, however, would break the code Into Its
major sub-systems with a plan showing the links between them. This description could be
successively refined until IndIvIdual code segments become very primitive operations, such as
CAR and COR . Furthermore , the code for a segment need not appear contiguously on the
standard program listing; for Instance, a group of related function definitions, though
scattered throughout a code listing, may at some level of description be considered a single code
segment

Since the goal of the apprentice Is eventually to integrate its understanding of a program at
all levels , surface plan Informat ion is represented as extra annotation distributed on the
corresponding parts of a deep plan. To begin with, the code correspolnding to each plan
segment is recorded as follows:

((segment-Id> SEGMENT LAMBDA-EXP <name> <cods -entry> <code-entry) ... )
FUNCALL
OPENCOOE

The <segment-Id> above thus identifIes both a deep plan segment and a corresponding
code segment. The <cod.-entry)’s are pointers to actual LISP s-expressions. In examples we
will indicate code-entries by enclosing the LISP s-expression in brace brackets thus:
( (PROG ... ) } .

We distinguish three kinds of code segments in LISP: lambda-expressIons (named :.nd
unnamed), function Invocation segments (uses of named lambda-expressions), and open c~de 

- 1
groupings. These are ind icated respectively by the three alternative keywords LAMBDA-i ~P, 

I 

- - 
-

FUNCALL, and OPENCODE above. For’ named lambda-expressions (I.e. function definitions), and

-- —-5 ~~~~~~~~~~-— ~~~~
---

~~~~~~~~~~~~~~~~~-


- ~~~~~~

‘

~~~~~~

- - . - - ~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~--~ - -

for FUNCALL segments, the <name> field in the statement above is filled In with the appropriate
atomic function name, to aid cross-referencing.

Instantlations of a particular segment type. e.g. HASH-SEGMENT, may be coded In any of
these forms. For example:

(i)

(DEFINE HASH (K)

(ABS (REMAINDER (SIZE TBL) K)))

(hash-88 SEGMENT LAIIBDA-EXP hash ((define hash (Ii) ...)))

(it)
(... (HASH X) ...)

(hash-96 SEGMENT FUNCALL hash ((hash x)))

(Iii)
(... (ABS (REMAINDER (SIZE TBL) X)) ...)

(hash -90 SEGMENT OPENCODE nil ((abs (remainder ...))))

Each of the above segments has the same behavior at the deep plan level , i.e. the same
- .1 specs. The differences between them are Important only for the surface stru cture of a

particular program. For Instance, in a single program there Is usually only one DEFINE (E s.
named LAMBDA-EXP) segment for a given segment type all FUNCALL segments have the same
specs as the DEF INE segment with the same function name.

- I

~~~~~~~~~~~~~~~~~~~~~ - — —--~~~~~~~ ~~~~~~~~~ — -5, _______________



- -~~~ 
-

66

Surface Plaits sad C.naectlve Tissue

The surface structure of a LISP program has two components: control flow and surface
data flow. The control flow specifies which code segments follow one another in sequential
execution, which segments are invoked as part or the execution of another (enclosing) segment,
and which segments return control to another (enclosing) segment. The surface data flow in a
program comprises the use of f ree variables, argument binding, and return values to achieve
the f low of data ob,rcts between segments The particular combinations of control flow and
data flow that are possible In a given program are determined by the programming language.

In LISP some control sequencing, such as the left-to-right order of evaluation of arguments,

Is built into the definition of the basic interpreter. However, other control flow facilities, such

as PROG and COND, are implemented so that they appear syntactically as function calls; similarly
for surface data flow primitives such as SETQ and RETURN. The PA. views these special forms

as connective tissue between the code segments In the program which actually Idou something

4 (i.e. have specs). Thus, the P.A. never builds a FUNCALL segment for PROG, COWl), SETQ. RETURN,

etc. As will be shown in the followIng sections, these special forms serve only to determIne the
control and data flow relationships between actual program segments.

Surface Control Flow

The apprentIce’s representation of su rface control flow between segments is based on three
relationships: 

~~! 
invokes, and returns. These particular concepts were chosen because they

are the ones most human programmmers naturally use to describe control flow in slngle-procesL

recursive languages like LISP. The fo llowing LISP program il lustra tes surface control

structure.

I’.’



~~~ -~~~ - -~~~~~-—--—- -

67

(DEFINE UPDATE (KEY DATA)
(PROGN

(DELETE KEY)
(INSERT KEY DATA)))

Surface Control Flow: -

[UPDATE—1](
I I

~invokes Ireturns

-
~~~ V I

(DELETE-3}---next--->(INSERT-5)

In the PA’s data base the above information Is encoded as part of the plan for UPDATE-i: —

(upd ate-i SEGMENT LAM BDA-EXP update ((define update (...) ...)})

(delete-3 SEGMENT FUNCALL delete ((delete ...)})

(insert -5 SEGMENT FIJNCALL Insert ((insert ...)})

(PLAN-FOR : update-i
(SUB-SEGMENTS : (delete-3 insert -5))

( INVOKES: d.lete-3)
- ? (NEXT: delete-3 insert -5)

(RETURNS : insert-5)
... )

Connective tissue for control flow generally fall s into two categories: sequencers and
group ers. A sequencer is a special form such as PROGP4 or GO which causes sequencing of
execution between LISP forms that are not nested. A uouper is a special form , such as

LAMBDA or DEFI NE , which allows the execution of a number of sub-forms to be grouped
together for net effect. Of course, many special forms are both sequencers and groupers. 

--~~~~~~~ ~~— - - ~~~~~~~~~~~~~~~~~~~~~~~~~~ 



— _ _ _ _ _ _ _ _ _ _ _ _ _ _

68

4

1 FIgure 31 illustrates more complicated control flow, which is part of the surface plan for the

fo llowIng program. (This particular example will be returned to in Chapters Four and Five).

(DEFINE LOCKUP (KEY)

- 
(PROG (BKT)

- (SETQ BKT (TIL (HASH KEY)))

LP (OR BKT (RETURN NIL))
(CORD ((EQ (CAM BKT) KEY)

- 

i (RETURN (CAR BKT))))
(SETQ BKT (CDR BKT))

- (GO LP)))

In this example , some of the control flo w in the plan depends on cases. Optional case

identifiers are added to NEXT and RETURNS statements to signify that- the indicated control flow
- takes place only for a given case of the sub-segment involved. To indicate control flow wh ich

pertains only to a given case of the super -segment , the PLAN-FO R expression itself can be

broken into cases, Just like a SPECS-FOR. For example, from Figure U:

-v ?

I

—~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~


-

- -.-‘-,-.-- • -

~

—- --- .--------- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~-.--- --
~~

- —~
-----•

~~~~
.-.-

~~
--•----—-•-•-

~
-- -

69

SEGMENT-S

hash-6 
~ 

arrayfetch -7
NEXT

NEXT
NEXT

LOOP-8 ________ L
~~~INVOK~~~~-..~~ •‘

~

‘

~

_nulltest-9

NEXT

N7

/
~~TL

I
~~~~

,,
J

fr
~~~~

Iconst~t.~5J ~~~~~~~~~~~~~~~~

RETURNS RETURNS

J
RETURNS RETURNS ~~~~

Figure 11. Control Flow for LOOKUP.

- ~~~~~~ —
— -----,-.--.-•-•—- - - -

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

‘10

(PLAN-FOR : loop-I

(INVOKES: nulltest-9)
(CASE-i

(NEXT: nulltest-9 constant-i5 case-i)
(RETURNS : constant-15))

(CASE-2

(NEXT: nulltest-9 car-ID case-2)
(NEXT : car-lO car-13)
(NEXT: car-13 equal-14)
(NEXT: equal-14 car-il case-i)
(RETURNS: car-li))

(CASE-3

(NEXT: equal-14 cdr- i2 case-2 ) -

(RETURNS: cdr -12))) -

Surface Data Flow

WE now recons ider the three types of data flow as they are realized In the code for a
program: data flow in and out of a single code segment, data flow between code segments at
the same level of descript ion, and data f low between sub-segments and the enclosing main
segment.

In LISP there are four basic techniques for moving data between code segments: variables
(I.e. SETQ), nesting of s-expressions (i.e. return values and argument binding ), property lists, and
side effects on CONS cells (RPLACA and RPLACD) or arrays (STORE). Of these we have currently
fully treated only the use of variables, arguments, return values, and the use of arrays. Our
current reasoning system (Chapter Three) Is able to deal with side effects on list structures In a
quite powerful way, but we are still not sure of the best way to represent the surface plans of

-—



‘
~

‘ - - ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 
_

~~~~~
._ - --

—

71

programs using RPLAC’s. We have not yet paid any attention to property lists, but it seems to us
that they should not be any harder to handle than RPLAC’s.

Thus In the subset of LISP we are working with, there are syntactically two ways that a
data ob ject may be input to a code segment, and two ways it may be the output. A data object
can be input either as the value of a free variable or , if the segment is a FUNCALL or a
LANBDA-EXP, as the bound value of a argument. On output, a data object can either be the
value of a free variable after the segment has executed or the return value of an s-expression.
Different instances of the same segment type can differ in the surface data flow of their input
and out put objects. For examp le. consider the Input and output objects of a segment typ e

-
-

which computes the hash of a key.

(SPECS-FOR : hash
(INPUTS : key-13 table-14)
(OUTPUTS : Index-iS)...)

The followin g two LISP code segments are alternative instantiations of this segment type which
differ In their surface data flow. (Of course, only one of the following definitions would
appear In a given program.)

(DEFINE HASH (K) (DEFINE HASH (K 1)
(ABS (ABS

(REMAINDER (SIZE TBL) (REMAINDER (SIZE L)
K))) K)))

(hash-88 SEGMENT LAIIBDA-EXP hash ((define hash (k) ...)))
(hash-92 SEGMENT LAMBDA-EXP hash ((define hash (k 1) . . .) })

In th. cod e on the left , the hash table is Input to the segment as the value of the free
.arssb~ T$L~ ~ the code on the right , however, the same data object is Input as the bound

of the ~~ssd lambda argument. L In both of them the index is output as the return
ihe kii*da~.ea tee.aon It ~s important for the apprentice to keep track of this sort of

~~~~j ~ iu.4ace date P~~ . inca K is th. cause of many careless programming bugs. This
s ~ ~ .~~. .m-.wsr~ in the input and output statements o~ the specs for

-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —



~ ---- - - -- - ~~~~~~~~~~~~~~~~--- — - -- -~~~~~~~~~~~ 

t 
- 

~~~~~~~~~~~~~ •- ‘.- ..-~~~--.y

‘72

a segment . (Note here that each input object is specified In a separate specs clause, a slight
variation from the initial definition of specs in SectIon 2.2.)

(SPECS-FOR: huh-AS
(INPUT: key -AD ARC (k})
(INPUT: table-DO FREE-VAR (tbl))
(OUTPUT: index-91 RETURN -VAL ((define ...)fl)

(SPECS-FOR: hash-92
(INPUT : key-93 ARC (k))
(INPUT: table-94 ARC (1))

(OUTPUT: index-95 RETURN-VAL ((define ...)}))

The brace brackets in each line above show the relevant code: for FREE-VAR data flow , the
variable involved; for ARC inputs , the argument position; for RETURN-VAL’s, the s-expression
whose return value Is the data object.

~
j FUNCALL code segm ents derive their sur face input and output data flo w from the

correspondIng function definition. Thus in a program wh ich used the left hand definition

f above , HASH-AS, a function caN would appear as follows:

• (HASH ...)

(hash-96 SEGMENT FUNCALL hash ((hash ...)))

(SPECS-FOR : hash- CA
(INPUT : key-Cl ARC (...))
(INPUT : table-98 FREE-VAR (tb fl)

-j (OUTPUT : index -99 RETURN-VAL ((hash ...))))

-- - --- -~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

-~~ —~~~~~~~~~~~~ - -~~-—- ----- - - - - —- ----- - -- r ~~~~~~~~-—~~
- -- - - fl ~~~~~~~~~

73

Data Flow Between Segments

Surface data flow between segments at the same level of description is achieved by
matching data flows in and out of code segments. For example, in LISP two code segments can
communicate data by using the same free variable. Nestings of s-expressi ons (I.e return values
and lambda-binding) is the other common way to move data between segments in LISP. Each
data flow link in the deep plan for a program will have a corresponding surfac e data flow
mechanism in the surface plan. Let us first consider the two sim ple cases which do not require
extra connective tissue:

(I) Same Free Variable

When the same free variable is used for “both ends” of a data f low link, the two segments
communicate d’rectly. To continue the above example, suppose the function call HASH-CA was
used in a program together with a function call segment CREATE-TABLE-lOl which has the
following surface data flow:

-

-
(SPECS-FOR: create-tab le-lOl

(OUTPUT: tab~e-i02 FREE-VAR (tbl})
...)

(create--table-lOl SEGMENT FUNCALL crtable ((crtable ...)))

In the code then we would see the following:

(CRTABLE ...)

(HASH ...)

These are two FUNCALL segments which have an output-input data flow link between them.

Just as the surface mechanism for- data flow into and out of a single segment is recorded as

extra annotation on the correspondIng INPUT and OUTPUT statement in the specs, surface data
flow between segments Is recorded on the corresponding DATAPLOW statement In the plan of
whIch they are sub-segments. For the present example, let SEG$ENT-33 be the unspecified

~- _ 4.__~~~ ~~~ -~~~~~-~~~
- -- -~~~~~~~~~~~~~~~~~~~~ --- -~~~~~~~~~~

-.-
~~~
-

74

segment which the above code Is a part of.

- 
-

. (PLAN-FOR : segment-33
(SUB-SEGMENTS : (create-table-lOl hash-CA ... ))
(DATAFLOW : (expand-table401 OUTPUT tab~e-iO2 FREE-VAR (tbl})

(hesh-96 INPUT table-CA FREE-VAR (tbl))

SAME-FREE-VAR )
• . .  )

(Ii) Nested S-Expressions

The other simple way to achieve outpu t-input data flo w between segments is by nesting the

correspond ing s-expressions and arranging that the desired data object Is output as the return

value of one segment and Input as an argument to the other. Expanding on the current

example

(HASH (KEYPART .

(hash- 96 SEGMENT FUNCALL hash ((hash ...)))

(keypart-65 SEGMENT FUNCALL keypart ((keypart ...)))

(SPECS-FOR: keypart-65

(OUTPUT: key-AS RETURN-VAL ((keypart . . .f l)

(PLAN-FOR : seg..nt-33
(SUB-SEGMENTS : (... hash-CA keypart-65 ...
(DATAFLOW : (key part-AS OUTPUT key-AS RETURN-VAL ((keypart ...)))

(hash-Cl INPUT key-Cl ARC ((key part ...)))

NESTED-SEXP)
...) .



_
~~~-

_
~~

_ 9 r - - - r w .~~-~~~ -r--.--n - -~~~
- - w~~~-~~~ Sr~~~~~~ ’

-
~

73

Data Flow Coupling

Often when formulating a plan using existing code segments the surface input and output
data flows of two segments will not match directly. For example, two code segments might use
different t ree variables for the same data object. In such cases, the programmer will typically
use data flow couplers in LISP such as SETQ and -RETURN to match the segments. (The term

“coupling” is by analogy with the interfacing of electronic modules in circuit design.) Data
flow couplers are part of the connective tissue of a program.

To illustrate coupling, suppose the programmer of SEGMENT- 33 had already written the
function definition for HASH which expects the table as the value of the free variable TBL , and
a different definition of CRTABLE which used the free variable TABLE. The surface data flow
can be coup led using SETQ as follows:

(CRTABLE ...)

(SETQ TBL TABLE) -

(HASH ...)

(PLAN-FOR: segment-33

(DATAFLOW : (create-table-201 OUTPUT tabls-ZOZ FREE-VAR (table))
• (hash-DO INPUT table-CA FREE-VAR (tbl))

COUPLING ((setq tbl table)))
Li

Obviously there are numerous ocher kinds of data flow coupling, corresponding to other
possible cases of mismatch between the surface inputs and outputs of two code segments .
Examp les of a few more of the common cases should suffice.

When an output object Is the return value of a code segment and it Is not possible to nest
5 s-ex pressions , a common coupling technique is to use a variable to store the output object.

Then If the object is input to the destination segment as an argument, the variable Is used in —

approprIate position. For example, the surface data flow between KEYPART and HASH In the
— earlier examp le could have been:

H

—

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —7_ - _ .- ’--,r ~~~~~~~~

76

(SETQ X (KEYPART . .))

(HASH X)

(PLAN-FOR : segment-33

- - (DATAFLOW : ( keypart -OS OUTPUT key-SO RETURN-VAL ((keyp art ...)))

(hash-CO INPUT key-Cl ARC (x ))
COUPLING ((setq x (keypart ...))))

... )
All the examples of surface data flow thus far have been between segments at the same

plan level. There is also data flow between a segment and its sub-segments. For examp le,

- 
— suppose the code for SEGMENT-33 is being used in a larger surface plan in which its return

value should be the hash table. The hash table is available Inside SECMENI-33 as the free
variable TBL In such a situation , the programmer typically uses PROS - RETURN as the coupling
mechanism:

- 
_



~
-.- - -

~~~~~~~~~~~ ~~~~~~~ — -- •-- -- -,- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~ -

(PROG (...)

(CITABLE ...)

(RETURN TBL))

(segnent-33 SEGMENT OPENCODE nil ((prog ...)))

(SPECS-FOR: seg.ent-33

(OUTPUT: table-34 RETURN-VAL ((prog ...)))...)
(PLAN-FOR: segment-33

(SUB-SEGMENTS : (create-tab le-lol ...))
(DATAFLOW : (create-table-lOt OUTPUT table-102 FREE-VAR (tbl))

(seginent-33 OUTPUT table-34 RETURN-VAL ((prog ...)))
COUPLING ((retur n tbl))))

Some special forms in LISP have “built-In” coupling, e.g. P10GM returns the value of Its last
form. Thus an akernatlve coding of the above might be

(P10GM

(CITABLE ...)

TBL)

(PLAN-FOR : segment-33

-1 (DA TAFLOW: (.xpand-segment-102 OUTPUT tab)e-103 FREE-VAR (tbl))
(segment-33 OUTPUT table-34 RETURN-VAL ((progn ... tbl)))
COUPLING ((progn ... t b l))))

L — ~~~~~~~~ —

--—

7$ -

More complicated coupling situations are represented by more complicated constructions
following the keyword COUPLING.

Knowledge Specific to LISP

- - Figure 12 is a summary of our current representation for the surface structure of LISP
programs. As mentioned previously, the specs and deep plan formalism developed In Sections
2.2 and 2.3 are intended to be independent of particular programming languages The basic
idea of a surface plan as presented in this section Is also quite generaL In other languages,
such as FORTRAN, ALGOL and COBOL, we expect to find the same notions of control
sequencing. grouping, data flow coupling, and connective tissue recast In different syntactic
forms.

In order to understand LISP programs. the apprentice needs two classes of LISP-specific
knowledge. First it should be initiali zed with the specs and surface data flow information for
built -in sefments like CAR, CDR, CONS, PLUS, EQUAL and many other functions that are
considered a part of basic LISP. Notice that these bulk-in segments are ~~~~~~,

treated as
primitives; rather they are described using specs in exactly the same way as user-defined
segments.

Another large body of LISP-specific knowledge Is Implicit In the procedures the apprentice
uses far building the surface plan far new LISP programs. Knowledge about the operation al
the LISP Interpreter and the meaning of special (FEXPI) forms such as PROG and COUP fa~ Ni

this category. We currently have no th i~kaNy motivated discipline for encoding this kind al
knowledge.

Implementation Note: The Code Table

The P.A.’s use of surface plans requires having the ability both to point at arbitrary
s-expressions in LISP code from statements In Its knowledge base and, given an s-expression. to
retrieve any comments or knowledge assertions referring to it. These requirements, coupled

with our decision to make the PA. transparent to the standard LISP Interpreter, dictated the
Implementation of an auxiliary lnde*ing structure called the code table.

.
~

— _I____—_~~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ___4_ — s - -— —.&-—- —

—
~~~~--~~~~~ -~~~~~~ - —~—~~~ ~~~~~~~~~

- H
- .

~ I
(SPECS-FOR: (segment-Id)

(INPUT: (object-Id> JFREE.VMk (cede-entry> )

ii ~~ AAG J
(OUTPUT: (object-Id> JFIEE-VM k (cede-entry> )

- ~IETusN.vAq
- )

(PLAN-FOR: (segment-Id )

(DATAFLOW : ((segment—Id) 4INPUT i... )
~ouTPuTç

((segment-Id> JINPUT i... )

~OUTPUT~

$MlE-FREE-VAR~ (cede-entry) )
NESTED-SUP
COUPLING

(NEXT: (segment-Id) (s~~~~t-Id) (case-Id> )

( INVOKES: (segment-Id) )

(RETURNS : (segment-Id> (case-Id) ) )

- Figure 12. Summary of Surface Plan RepresentatIon
I

_ _ _  ~~~~~~~~~~
--

~~~—----~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~--- - —~~~-—--~~ ~~~~~~ — -~~~~~~~~

~ ~~~~
— --- - -~~~~~~~~~-~~~~~

~.,.— ~~~~~~~ - _
_ _ _ _ _ _ ~.— -—-- -~~~~- ~~

-.-.---.

80

As a new LISP program is read Into our current apprentice. an entry in the code table (a

code-entry) Is created In a recursive fashion for each s-expression in the code. A code entry has

three fields : the first field is a pointer to the actual s-expression, wh ich is used as the key to

retrieve the entry from the table ; the second field points to the code -entry of th e paren t

s-expression , which facilitates the P.A~s moving aroun d locally in the LISP cod e, and the third

field Is one bit, denoting whether the current s-expression is the CAR or CDR of its parent.

Thus whenever statements in the surface plan refer to something in the code, such as a

function name, a lambda-argument, etc., the apprentice always points to the code indirectly

using the corresp onding code-entry . This Indirection has been indicated syntactically in this

report by enclosing the code in brace brackets (...).

I

I

- - S

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ —S 
-

. S

ti~ — —
~~~ -.——~-~~~~~ _±____ -— - —-.~-- ____— 5- - — _______1.l,


— —--s-- S c~~~~~~~~~~~~ s~~~~~~ - ’ W ~~’
-
~~~ 

-
~~ 

81

2.5 The Organization Of Programming Knowledge

The elements of program descript~on outlined above provide a conv enient language for
representing the structure and behavior of particular programs. However , a useful
programmer ’s apprentice will also need a large knowledge base of common and general
programming concepts. We do not yet completely understand how to build this knowledge
base; nonetheless, we feel that the descriptive elements already developed for particular
programs will provide an adequate basis for representing more general knowledge as well. In
this section we present our current thoughts on the design of such a programming knowledge
base.

Our design has two major considerations: first, the knowledge base should contain most of
the stand ard programming concepts , ob ject types , segment types , and plans In common use
second, it should be structured so as to capture the significant generalizations of the domain.
Our discussion will concentrate on the issues of overall organization, ignoring many technical
problems of large-scale data base design which are currently being researched elsewhere.

Programm ing Concepts

- 

- There seems to exist a general hierarchy of programming concepts which may be used as
the basis for structuring part of the knowledge base. Within this hierarchy, as much
knowledge as possible is to be captured at the most general level. For example, a very abstract

5 1 concept is data-structures, which subsumes all object types that contain a varying number of
members. This general concept also Includes the membership relation and the most general
specs for lookup, insert and delete.

Moi t concepts are specializations of more general concepts. For examp le, 
!i.! ~~~~ 

is a

specialization of data-structures. Some knowledge about lists comes from the fact that lists are
data-structures , wh ile some of It is particular to lists. The parts decomposition of lists into

• FIRST and REST, and a definition of the MEMBER relations is particular to lists, while the specs
for Insert, lookup and delete are essentially the same for lists as for data-structures in general
(see Figure 13). 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- - - - —— -5---S-~~~---~,-.., —. - -

82

DATA-STRUCTURES LISTS

(SPECS-FOR: insert-se gment (SPECS-FOR : insert-se gment
S

(INPUTS: object-i object-2) (INPUTS: object-i object-2)

- 4 (EXPECT: (data-structure object-i)) (EXPECT: (list object-i))

(OUTPUTS: object-3) (OUTPUTS: object-3)
(ASSERT: (ASSERT:
(data-structure object-3) (list object-3)

- f
(member object-3 object-2) -

(membsr ob.ject-3 object—2)

(for—all (member object-i zobject) (for-all (member object-i zobject)

(member object-3 object)))) (member object-3 object))))

f (PART list first)
(PART list rest)

(RELATION data-structure member) (RELATION list member)

• (RELATION DEFINITION
(member list object) (.)

(or (first list object)

(member (rest list] object)))

Figure 15. LIsts as a Specialization of Data.Structures.

-

-~~ S - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - -,

83

H objects

data-structures numbers

/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~linear-structures

/ / N
associative-structures generic-structures recursive—structu res

/\ \ /
hashing arrays lists

\~~~

a-lists

:~
- . - FIgure 14. Partial Hierarchy of ProgrammIng Concepts

-- - - ~~~~ —.- -.-

- I General concepts can be specialized In a multiple-level, tree-like fashion (see Figure 14). For
- example, one specialization of data-structures is associative-structures. Associative-structures

contain members called entries which are decomposed into KEYPART and DATAPART. The specs
for lookup and delete operations on associative-structures differ from those on data-structures

-
-
~ In general, in that associative retrieval is usually performed given only the KEYPART of an

-

S

entry. (Hash tables and a-lists are associative-structures.) A second possible specialization of
the data-structures concept is linea r-structures. Arrays and lists are examples of

linear -structu res, since they both have natural total orderings of their member objects. Notice
in Figure 14 that we expect the hierarch y of programming concepts to be “tangled , i.e. some
concepts may have several possible generalizations.

Plan Types

In addition to the hierarc hy of concepts there also seems to be a hierarchy of plan types
which captures generalizations of procedural structure. An obvious example of a very general

-
- plan type Is the plan for a loop (see Figure 15). SpecIfic kinds of loops, such as search ioops or

approximation loops , can be considered to be refinements of this general plan.

In its most abstract , a ioop has four essential segments (see Figure 15): a TEST on the

• current loop object to see if the loop is done, a BUMP which calculates the loop object for the
-
‘ next iteration from the current one; the BODY , which does something to the loop object; and

the tail recursion segment , LOOP- i in the diagram, which achieves the iteration. The actual
specs for these sub -segme nts are not shown , since they are too abstact to be usefu l -- for
example, the BODY has no particular Input or output condItions at this level.

However, If this plan Is refined to be a search loop, the specs for the body become the test
for a sucesstu l match. Thus the follo wing specs, together with the plan In Figure IS, express
the most general structure of iteratIve searching.

~ s

-

___- - - -

~

-

~

--

